
Eclectica http://www.eclectica.ca/howto/ssl-cert-howto.php

1 of 12 14/11/03 15:21

Eclectica http://www.eclectica.ca/howto/ssl-cert-howto.php

2 of 12 14/11/03 15:21

 Reference
 Installation
 Changelog
 FAQ
 Mailing Lists
 Download

Creating and Using SSL Certificates
This document describes how to establish yourself as a root certificate authority (root CA) using the
OpenSSL toolset. As a root CA, you are able to sign and install certificates for use in your Internet
server applications, such as Apache and Stunnel.

Table of Contents
Scope
Quick Start
Background
Prerequisites
Initial Setup
Creating a Root Certificate
Creating a Certificate Signing Request (CSR)
Signing a Certificate
Installing the Certificate and Key
Distributing the CA Certificate
Renewing Certificates
Getting a Commercially Signed Certificate
Publishing Your CA Certificate
Summary
Configuration File
References

Scope
This document covers a very specific, limited purpose, but one that meets a common need:
preventing browser, mail, and other clients from complaining about the certificates installed on your
server.

Not covered is dealing with a commercial root certificate authority (CA). Instead, we will become our
own root CA, and sign our own certificates.

These procedures were developed using OpenSSL 0.9.6, 24 Sep 2000, on Linux.

Back to top

Quick Start
Those who want to start creating certificates right away without reading this whole document should
skip to the summary at the end.

Back to top

Background
Why be our own root CA? So that we can take advantage of SSL encryption without spending
unnecessary money on having our certificates signed.

A drawback is that browsers will still complain about our site not being trusted until our root
certificate is imported. However, once this is done, we are no different from the commercial root CAs.

Clients will only import our root certificate if they trust us. This is where the commercial CAs come
in: they purport to do extensive research into the people and organizations for whom they sign
certificates. By importing (actually, by the browser vendors incorporating) their trusted root
certificates, we are saying that we trust them when they guarantee that someone else is who they say
they are. We can trust additional root CAs (like ourselves) by importing their CA certificates.

Note: If you are in the business of running a commercial secure site, obtaining a commercially signed
certificate is the only realistic choice.

Eclectica http://www.eclectica.ca/howto/ssl-cert-howto.php

3 of 12 14/11/03 15:21

Back to top

Prerequisites
You will need an installed copy of OpenSSL for this, which is available from
http://www.openssl.org. Chances are it is already installed on your machine. This document will not
cover the installation procedure.

Back to top

Initial Setup
First, we will create a directory where we can work. It does not matter where this is; I am arbitrarily
going to create it in my home directory.

mkdir CA
cd CA
mkdir newcerts private

The CA directory will contain:

Our Certificate Authority (CA) certificate
The database of the certificates that we have signed
The keys, requests, and certificates we generate

It will also be our working directory when creating or signing certificates.

The CA/newcerts directory will contain:

A copy of each certificate we sign

The CA/private directory will contain:

Our CA private key

This key is important:

Do not lose this key. Without it, you will not be able to sign or renew any certificates.
Do not disclose this key to anyone. If it is compromised, others will be able to impersonate
you.

Our next step is to create a database for the certificates we will sign:

echo '01' >serial
touch index.txt

Rather than use the configuration file that comes with OpenSSL, we are going to create a minimal
configuration of our own in this directory. Start your editor (vi, pico, ...) and create a basic
openssl.cnf:

---Begin---
#
OpenSSL configuration file.
#

Establish working directory.

dir = .

----End----

Back to top

Creating a Root Certificate
With OpenSSL, a large part of what goes into a certificate depends on the contents of the
configuration file, rather than the command line. This is a good thing, because there is a lot to
specify.

Eclectica http://www.eclectica.ca/howto/ssl-cert-howto.php

4 of 12 14/11/03 15:21

The configuration file is divided into sections, which are selectively read and processed according to
openssl command line arguments. Sections can include one or more other sections by referring to
them, which helps to make the configuration file more modular. A name in square brackets (e.g. "[req
]") starts each section.

We now need to add the section that controls how certificates are created, and a section to define the
type of certificate to create.

The first thing we need to specify is the Distinguished Name. This is the text that identifies the owner
of the certificate when it is viewed. It is not directly referenced in the configuration file, but is
included into the section processed when certificate requests are created. The command is "openssl req
<args>", so the section is titled [req].

Add the following to openssl.cnf:

---Begin---

[req]
default_bits = 1024 # Size of keys
default_keyfile = key.pem # name of generated keys
default_md = md5 # message digest algorithm
string_mask = nombstr # permitted characters
distinguished_name = req_distinguished_name

[req_distinguished_name]
Variable name Prompt string
#---------------------- ----------------------------------
0.organizationName = Organization Name (company)
organizationalUnitName = Organizational Unit Name (department, division)
emailAddress = Email Address
emailAddress_max = 40
localityName = Locality Name (city, district)
stateOrProvinceName = State or Province Name (full name)
countryName = Country Name (2 letter code)
countryName_min = 2
countryName_max = 2
commonName = Common Name (hostname, IP, or your name)
commonName_max = 64

Default values for the above, for consistency and less typing.
Variable name Value
#------------------------------ ------------------------------
0.organizationName_default = The Sample Company
localityName_default = Metropolis
stateOrProvinceName_default = New York
countryName_default = US

[v3_ca]
basicConstraints = CA:TRUE
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid:always,issuer:always

----End----

In order to protect ourselves from unauthorized use of our CA certificate, it is passphrase protected.
Each time you use the CA certificate to sign a request, you will be prompted for the passphrase. Now
would be a good time to pick a secure passphrase and put it in a safe place.

All the preparation is now in place for creating our self-signed root certificate. For this, we want to
override some of the defaults we just put into the configuration, so we will specify our overrides on
the command line.

Our overrides to the "openssl req" command are:

Create a new self-signed certificate: -new -x509
Create a CA certificate: -extensions v3_ca
Make it valid for more than 30 days: -days 3650
Write output to specific locations: -keyout, -out
Use our configuration file: -config ./openssl.cnf

(A note on the term of validity of root certificates: When a root certificate expires, all of the
certificates signed with it are no longer valid. To correct this situation, a new root certificate must be
created and distributed. Also, all certificates signed with the expired one must be revoked, and
re-signed with the new one. As this can be a lot of work, you want to make your root certificate valid
for as long as you think you will need it. In this example, we are making it valid for ten years.)

Run the command as shown. In this case, the PEM pass phrase it asks for is a new one, which you
must enter twice:

Eclectica http://www.eclectica.ca/howto/ssl-cert-howto.php

5 of 12 14/11/03 15:21

openssl req -new -x509 -extensions v3_ca -keyout private/cakey.pem \
-out cacert.pem -days 3650 -config ./openssl.cnf
Using configuration from ./openssl.cnf
Generating a 1024 bit RSA private key
.......++++++
..........................++++++
writing new private key to 'private/cakey.pem'
Enter PEM pass phrase:demo
Verifying password - Enter PEM pass phrase:demo

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Organization Name (company) [The Sample Company]:<enter>
Organizational Unit Name (department, division) []:CA Division
Email Address []:ca@sample.com
Locality Name (city, district) [Metropolis]:<enter>
State or Province Name (full name) [New York]:<enter>
Country Name (2 letter code) [US]:<enter>
Common Name (hostname, IP, or your name) []:TSC Root CA

This process produces two files as output:

A private key in private/cakey.pem
A root CA certificate in cacert.pem

cacert.pem is the file you want to distribute to your clients.

The private key (cakey.pem) looks like this:

-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,0947F49BB28FE5F4

jlQvt9WdR9Vpg3WQT5+C3HU17bUOwvhp/r0+viMcBUCRW85UqI2BJJKTi1IwQQ4c
tyTrhYJYOP+A6JXt5BzDzZy/B7tjEMDBosPiwH2m4MaP+6wTbi1qR1pFDL3fXYDr
ZsuN08dkbw9ML6LOX5Rl6bIBL3i5hnGiqm338Fl52gNstThv0C/OZhXT3B4qsJn8
qZb3mC6U2nRaP/NpZPcEx4lv2vH7OzHTu1TZ7t0asSpgpuH58dfHPw775kZDep2F
LXA3Oeavg0TLFHkaFBUx2xaeEG6Txpt9I74aAsw1T6UbTSjqgtsK0PHdjPNfPGlY
5U3Do1pnU9hfoem/4RAOe0cCovP/xf6YPBraSFPs4XFfnWwgEtL09ReFqO9T0aSp
5ajLyBOYOBKQ3PCSu1HQDw/OzphInhKxdYg81WBBEfELzSdMFQZgmfGrt5DyyWmq
TADwWtGVvO3pEhO1STmCaNqZQSpSwEGPGo5RFkyFvyvyozWX2SZg4g1o1X40qSg9
0FMHTEB5HQebEkKBoRQMCJN/uyKXTLjNB7ibtVbZmfjsi9oNd3NJNVQQH+o9I/rP
wtFsjs+t7SKrsFB2cxZQdDlFzD6EBA+5ytebGEI1lJHcOUEa6P+LTphlwh/o1QuN
IKX2YKHA4ePrBzdgZ+xZuSLn/Qtjg/eZv6i73VXoHk8EdxfOk5xkJ+DnsNmyx0vq
W53+O05j5xsxzDJfWr1lqBlFF/OkIYCPcyK1iLs4GOwe/V0udDNwr2Uw90tefr3q
X1OZ9Dix+U0u6xXTZTETJ5dF3hV6GF7hP3Tmj9/UQdBwBzr+D8YWzQ==
-----END RSA PRIVATE KEY-----

Of course, you don't want to show this to anyone! Needless to say, the one shown here is now useless
as a private key.

The certificate (cacert.pem) looks like this:

-----BEGIN CERTIFICATE-----
MIIDrTCCAxagAwIBAgIBADANBgkqhkiG9w0BAQQFADCBnDEbMBkGA1UEChMSVGhl
IFNhbXBsZSBDb21wYW55MRQwEgYDVQQLEwtDQSBEaXZpc2lvbjEcMBoGCSqGSIb3
DQEJARYNY2FAc2FtcGxlLmNvbTETMBEGA1UEBxMKTWV0cm9wb2xpczERMA8GA1UE
CBMITmV3IFlvcmsxCzAJBgNVBAYTAlVTMRQwEgYDVQQDEwtUU0MgUm9vdCBDQTAe
Fw0wMTEyMDgwNDI3MDVaFw0wMjEyMDgwNDI3MDVaMIGcMRswGQYDVQQKExJUaGUg
U2FtcGxlIENvbXBhbnkxFDASBgNVBAsTC0NBIERpdmlzaW9uMRwwGgYJKoZIhvcN
AQkBFg1jYUBzYW1wbGUuY29tMRMwEQYDVQQHEwpNZXRyb3BvbGlzMREwDwYDVQQI
EwhOZXcgWW9yazELMAkGA1UEBhMCVVMxFDASBgNVBAMTC1RTQyBSb290IENBMIGf
MA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDaiAwfKB6ZBtnTRTIo6ddomt0S9ec0
NcuvtJogt0s9dXpHowh98FCDjnLtCi8du6LDTZluhlOtTFARPlV/LVnpsbyMCXMs
G2qpdjJop+XIBdvoCz2HpGXjUmym8WLqt+coWwJqUSwiEba74JG93v7TU+Xcvc00
5MWnxmKZzD/R3QIDAQABo4H8MIH5MAwGA1UdEwQFMAMBAf8wHQYDVR0OBBYEFG/v
yytrBtEquMX2dreysix/MlPMMIHJBgNVHSMEgcEwgb6AFG/vyytrBtEquMX2drey
six/MlPMoYGipIGfMIGcMRswGQYDVQQKExJUaGUgU2FtcGxlIENvbXBhbnkxFDAS
BgNVBAsTC0NBIERpdmlzaW9uMRwwGgYJKoZIhvcNAQkBFg1jYUBzYW1wbGUuY29t
MRMwEQYDVQQHEwpNZXRyb3BvbGlzMREwDwYDVQQIEwhOZXcgWW9yazELMAkGA1UE
BhMCVVMxFDASBgNVBAMTC1RTQyBSb290IENBggEAMA0GCSqGSIb3DQEBBAUAA4GB
ABclymJfsPOUazNQO8aIaxwVbXWS+8AFEkMMRx6O68ICAMubQBvs8Buz3ALXhqYe
FS5G13pW2ZnAlSdTkSTKkE5wGZ1RYSfyiEKXb+uOKhDN9LnajDzaMPkNDU2NDXDz
SqHk9ZiE1boQaMzjNLu+KabTLpmL9uXvFA/i+gdenFHv
-----END CERTIFICATE-----

We can query the contents of this certificate with openssl to learn to whom belongs, what it is valid
for, etc.:

openssl x509 -in cacert.pem -noout -text
openssl x509 -in cacert.pem -noout -dates
openssl x509 -in cacert.pem -noout -purpose

Eclectica http://www.eclectica.ca/howto/ssl-cert-howto.php

6 of 12 14/11/03 15:21

Back to top

Creating a Certificate Signing Request (CSR)
Now that we have a root certificate, we can create any number of certificates for installation into our
SSL applications such as https, spop, or simap. The procedure involves creating a private key and
certificate request, and then signing the request to generate the certificate.

Our configuration file needs some more definitions for creating non-CA certificates. Add the
following at the end of the file:

---Begin---
[v3_req]
basicConstraints = CA:FALSE
subjectKeyIdentifier = hash

----End----

To avoid having to repeatedly put this on the command line, insert the following line to the [req]
section after the distinguished_name line as shown:

---Begin---
distinguished_name = req_distinguished_name
req_extensions = v3_req

----End----

Now we are ready to create our first certificate request. In this example, we are going to create a
certificate for a secure POP server at mail.sample.com. Everything looks the same as when we created
the CA certificate, but three of the ensuing prompts get different responses.

Organizational Unit: a reminder of what the certificate is for
Email Address: the postmaster
Common Name: the server hostname

The Common Name must be (or the IP address must resolve to) the server name your clients use to
contact your host. If this does not match, every time they connect your clients will get a message
asking them if they want to use this server. In effect, the client software is saying, "Warning! You
asked for mail.sample.com; the responding machine's certificate is for smtp.sample.com.
Are you sure you want to continue?"

openssl req -new -nodes -out req.pem -config ./openssl.cnf
...
Organizational Unit Name (department, division) []:Mail Server
Email Address []:postmaster@sample.com
Common Name (hostname, IP, or your name) []:mail.sample.com
...

This process produces two files as output:

A private key in key.pem
A certificate signing request in req.pem

These files should be kept. When the certificate you are about to create expires, the request can be
used again to create a new certificate with a new expiry date. The private key is of course necessary for
SSL encryption. When you save these files, meaningful names will help; for example,
mailserver.key.pem and mailserver.req.pem.

The certificate signing request looks like this:

-----BEGIN CERTIFICATE REQUEST-----
MIICJDCCAY0CAQAwgagxGzAZBgNVBAoTElRoZSBTYW1wbGUgQ29tcGFueTEUMBIG
A1UECxMLTWFpbCBTZXJ2ZXIxJDAiBgkqhkiG9w0BCQEWFXBvc3RtYXN0ZXJAc2Ft
cGxlLmNvbTETMBEGA1UEBxMKTWV0cm9wb2xpczERMA8GA1UECBMITmV3IFlvcmsx
CzAJBgNVBAYTAlVTMRgwFgYDVQQDEw9tYWlsLnNhbXBsZS5jb20wgZ8wDQYJKoZI
hvcNAQEBBQADgY0AMIGJAoGBAPJhc++WxcBaoDbJpzFbDg42NcOz/ELVFMU4FlPa
yUzUO+xXkdFRMPKo54d4Pf1w575Jhlu9lE+kJ8QN2st6JFySbc9QjPwVwl9D2+I3
SSf2kVTu+2Ur5izCPbVAfU0rPZxxK8ELoOkA1uwwjFz6EFuVvnHwlguonWKDtmYW
u7KTAgMBAAGgOzA5BgkqhkiG9w0BCQ4xLDAqMAkGA1UdEwQCMAAwHQYDVR0OBBYE
FLWaQsUVIQzWr58HtDinH1JfeCheMA0GCSqGSIb3DQEBBAUAA4GBAAbe0jrGEQ3i
tyVfy5Lg4/f69rKvDGs+uhZJ9ZRx7Dl92Qq2osE7XrLB1bANmcoEv/ORLZOjWZEY
NjMvuz60O7R8GKBrvb/YhAwWhIIt2LJqPkpAEWS0kY0AkoQcfZ7h6oC35+eJ7okg
Uu3WuE57RgcNt7/ftr0sG1jUyRwMLvhv
-----END CERTIFICATE REQUEST-----

Eclectica http://www.eclectica.ca/howto/ssl-cert-howto.php

7 of 12 14/11/03 15:21

We can view the contents to make sure our request is correct:

openssl req -in req.pem -text -verify -noout

Back to top

Signing a Certificate
Now we need to add the configuration file section that deals with being a Certificate Authority. This
section will identify the paths to the various pieces, such as the database, the CA certificate, and the
private key. It also provides some basic default values. Insert the following into openssl.cnf just
before the [req] section:

---Begin---
[ca]
default_ca = CA_default

[CA_default]
serial = $dir/serial
database = $dir/index.txt
new_certs_dir = $dir/newcerts
certificate = $dir/cacert.pem
private_key = $dir/private/cakey.pem
default_days = 365
default_md = md5
preserve = no
email_in_dn = no
nameopt = default_ca
certopt = default_ca
policy = policy_match

[policy_match]
countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

----End----

To sign the request we made in the previous step, execute the following and respond to the prompts.
Note that you are asked for the PEM passphrase selected earlier:

openssl ca -out cert.pem -config ./openssl.cnf -infiles req.pem
Using configuration from ./openssl.cnf
Enter PEM pass phrase:demo
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
organizationName :PRINTABLE:'The Sample Company'
organizationalUnitName:PRINTABLE:'Mail Server'
emailAddress :IA5STRING:'postmaster@sample.com'
localityName :PRINTABLE:'Metropolis'
stateOrProvinceName :PRINTABLE:'New York'
countryName :PRINTABLE:'US'
commonName :PRINTABLE:'mail.sample.com'
Certificate is to be certified until Dec 8 04:37:38 2002 GMT (365 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

This process updates the CA database, and produces two files as output:

A certificate in cert.pem
A copy of the certificate in newcerts/<serial>.pem

Again, you can inspect the certificate:

openssl x509 -in cert.pem -noout -text -purpose | more

The certificate has both the encoded version and a human-readable version in the same file. You can
strip off the human-readable portion as follows:

mv cert.pem tmp.pem
openssl x509 -in tmp.pem -out cert.pem

Eclectica http://www.eclectica.ca/howto/ssl-cert-howto.php

8 of 12 14/11/03 15:21

Back to top

Installing the Certificate and Key
This depends on the application. Some want the key and the certificate in the same file, and others
want them separately. Combining them is easily done with:

cat key.pem cert.pem >key-cert.pem

After this step, you have three installable components to choose from:

A private key in key.pem
A certificate in cert.pem
A combined private key and certificate in key-cert.pem

Copy the appropriate files into the locations specified by the instructions for your application and
system. Restart the applications, and you are in operation with your new certificate.

Apache

Apache has separate configuration directives for the key and the certificate, so we keep each in its
own file. These files should be kept outside of the DocumentRoot subtree, so a reasonable directory
structure might be:

F i l e Comment
/home/httpd/html Apache DocumentRoot
/home/httpd/ssl SSL-related files
/home/httpd/ssl/cert.pem Site certificate
/home/httpd/ssl/key.pem Site private key

Within the <VirtualHost> directive for the site (which of course should be on port 443), include the
directives that point to these files:

<VirtualHost 192.168.1.1:443>
 ServerName mail.sample.com
 DocumentRoot /home/httpd/html
 ... other directives for this site ...
 SSLEngine on
 SSLLog /var/log/ssl_engine_log
 SSLCertificateFile /home/httpd/ssl/cert.pem
 SSLCertificateKeyFile /home/httpd/ssl/key.pem
</VirtualHost>

Stunnel

stunnel is used as an SSL wrapper for normal non-secure services such as IMAP and POP. It accepts as
arguments (among other things) the service to execute, and the location of the certificate and private
key.

The key and the certificate are provided in the same file. These can go anywhere, but a good location
might be /etc/ssl/certs. Specify it on the stunnel command line as follows:

stunnel -p /etc/ssl/certs/key-cert.pem <other stunnel args...>

More to come...

Back to top

Distributing the CA Certificate
This, finally, is the step that stops the clients from complaining about untrusted certificates. Send
cacert.pem to anyone who is going to use your secure servers, so they can install it in their
browsers, mail clients, et cetera as a root certificate.

Back to top

Eclectica http://www.eclectica.ca/howto/ssl-cert-howto.php

9 of 12 14/11/03 15:21

Renewing Certificates
Your certificate chain can break due to certificate expiry in two ways:

The certificates you signed with your root certificate have expired.
Your root certificate itself has expired.

In the second case, you have some work to do. A new root CA certificate must be created and
distributed, and then your existing certificates must be recreated or re-signed.

In the first case, you have two options. You can either generate new certificate signing requests and
sign them as described above, or (if you kept them) you can re-sign the original requests. In either
case, the old certificates must be revoked, and then the new certificates signed and installed into your
secure applications as described earlier.

You cannot issue two certificates with the same Common Name, which is why the expired certificates
must be revoked. The certificate is in the newcerts directory; you can determine its filename by
browsing index.txt and searching for the Common Name (CN) on it. The filename is the index plus
the extension ".pem", for example "02.pem". To revoke a certificate:

openssl ca -revoke newcerts/02.pem -config ./openssl.cnf
Using configuration from ./openssl.cnf
Enter PEM pass phrase: demo
Revoking Certificate 02.
Data Base Updated

Now that the certificate has been revoked, you can re-sign the original request, or create and sign a
new one as described above.

Back to top

Getting a Commercially Signed Certificate
The process is basically the same as the one just demonstrated, but the CA does most of it. You need
to generate a Certificate Signing Request as shown above, and then submit it for signing. You will
receive a signed certificate for installation.

This certificate will automatically be trusted by your client's browser, as the browser has the
commercial CA's certificate built in. There is no need to distribute anything.

The configuration described here may be inadequate for this purpose, as there is much more that can
go into a request. Different certificate authorities require different features in the certificate signing
request, none of which we have gone into here. This additional material is beyond the current scope
of this document.

Back to top

Publishing Your CA Certificate
You can post the certificate on your web site for download. If you do this, you should also post a
Certificate Revocation List (CRL), and a means of displaying a certificate given its serial number.
This is outside the current scope of this document.

Apache will serve your certificate in a form recognizable to browsers if you specify its MIME type.
For example, you can use the filename extension ".crt" for downloadable certificates, and put the
following into the general section of your Apache configuration:

AddType application/x-x509-ca-cert .crt

Now you can post the certificate for download with a link like
Our Root Certificate, and when the link is followed
the visitor's browser would offer to install the certificate.

The CRL can be created as follows:

Eclectica http://www.eclectica.ca/howto/ssl-cert-howto.php

10 of 12 14/11/03 15:21

openssl ca -gencrl -crldays 31 -config ./openssl.cnf -out rootca.crl

More to come...

Back to top

Summary
You now have enough information to create and sign certificates on your own behalf. While this is a
fairly long document, the procedure can be summarized easily.

One-Time Setup

Set up, and create a root CA certificate.

Commands

mkdir CA
cd CA
mkdir newcerts private
echo '01' >serial
touch index.txt
(IMPORTANT: Install and edit the configuration file shown below.)
openssl req -new -x509 -extensions v3_ca -keyout private/cakey.pem \
-out cacert.pem -days 365 -config ./openssl.cnf

Output

F i l e Purpose
cacert.pem CA certificate
private/cakey.pem CA private key

Distribute cacert.pem to your clients.

Per Certificate

Create certificate signing requests and sign them, supplying appropriate values for the Common
Name and the Organizational Unit.

Commands

openssl req -new -nodes -out req.pem -config ./openssl.cnf
openssl ca -out cert.pem -config ./openssl.cnf -infiles req.pem
cat key.pem cert.pem >key-cert.pem

Output

F i l e Purpose
key.pem Private key
req.pem Certificate signing request
cert.pem Certificate
key-cert.pem Combined private key and certificate

Install key.pem and cert.pem, or just key-cert.pem as appropriate for your server application.

Per Certificate - Renewal

Revoke the expired certificate, and re-sign the original request.

Commands

Eclectica http://www.eclectica.ca/howto/ssl-cert-howto.php

11 of 12 14/11/03 15:21

openssl ca -revoke newcerts/<serial>.pem -config ./openssl.cnf
openssl ca -out cert.pem -config ./openssl.cnf -infiles req.pem

Install the renewed certificates in the same manner as the original ones.

Back to top

Configuration File
(This file is available for download.)

---Begin---
#
OpenSSL configuration file.
#

Establish working directory.

dir = .

[ca]
default_ca = CA_default

[CA_default]
serial = $dir/serial
database = $dir/index.txt
new_certs_dir = $dir/newcerts
certificate = $dir/cacert.pem
private_key = $dir/private/cakey.pem
default_days = 365
default_md = md5
preserve = no
email_in_dn = no
nameopt = default_ca
certopt = default_ca
policy = policy_match

[policy_match]
countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[req]
default_bits = 1024 # Size of keys
default_keyfile = key.pem # name of generated keys
default_md = md5 # message digest algorithm
string_mask = nombstr # permitted characters
distinguished_name = req_distinguished_name
req_extensions = v3_req

[req_distinguished_name]
Variable name Prompt string
#---------------------- ----------------------------------
0.organizationName = Organization Name (company)
organizationalUnitName = Organizational Unit Name (department, division)
emailAddress = Email Address
emailAddress_max = 40
localityName = Locality Name (city, district)
stateOrProvinceName = State or Province Name (full name)
countryName = Country Name (2 letter code)
countryName_min = 2
countryName_max = 2
commonName = Common Name (hostname, IP, or your name)
commonName_max = 64

Default values for the above, for consistency and less typing.
Variable name Value
#------------------------------ ------------------------------
0.organizationName_default = The Sample Company
localityName_default = Metropolis
stateOrProvinceName_default = New York
countryName_default = US

[v3_ca]
basicConstraints = CA:TRUE
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid:always,issuer:always

[v3_req]
basicConstraints = CA:FALSE
subjectKeyIdentifier = hash

----End----

Back to top

References

Eclectica http://www.eclectica.ca/howto/ssl-cert-howto.php

12 of 12 14/11/03 15:21

More information is available at the following sites (opens in new window):

OpenSSL Home Page
OpenSSL Documentation
OpenSSL FAQ
Nick Burch's Certificate Management and Installation with OpenSSL
Franck Martin's SSL Certificates HOWTO

Back to top

Researched and written by Marcus Redivo.
Permission to use this document for any purpose is hereby granted, providing that the copyright information and this
disclaimer is retained. Author accepts no responsibility for any consequences arising from the use of this information.

Copyright © 1996, 2003 Marcus Redivo. All rights reserved.
Last modified on Fri Aug 15 12:44:49 2003

Please report broken links and other web site problems to the webmaster. Thanks!

